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1 INTRODUCTION

Nearly all of the software we use today is part of a distributed
system. Apps on your phone participate with hosted services in
the cloud; together they form a distributed system. Hosted services
themselves are massively distributed systems, often running on
machines spread across the globe. “Big data” systems and enterprise
databases are distributed across many machines. Most scientific
computing and machine learning systems work in parallel across
multiple processors. Even legacy desktop operating systems and
applications like spreadsheets and word processors are tightly inte-
grated with distributed backend services.

Distributed systems are tricky, so their ubiquity should worry
us. Multiple unreliable machines are running in parallel, sending
messages to each other across network links with arbitrary delays.
How can we be confident that our programs do what we want
despite this chaos?

This problem is urgent, but it is not new. The traditional an-
swer has been to reduce this complexity with memory consistency
guarantees: assurances that the accesses to memory (heap vari-
ables, database keys, etc) occur in a controlled fashion. However,
the mechanisms used to enforce these guarantees—coordination
protocols—are often criticized as barriers to high performance, scale
and availability of distributed systems.

1.1 The High Cost of Coordination

Coordination protocols enable autonomous, loosely coupled ma-
chines to jointly decide how to control basic behaviors, including
the order of access to shared memory. These protocols are among
the most clever and widely cited ideas in distributed computing.
Some well-known techniques include the Paxos and Two-Phase
Commit protocols, and global barriers underlying computational
models like Bulk Synchronous Processing.

Unfortunately, the expense of coordination protocols can make
them “forbidden fruit” for programmers. James Hamilton from
Amazon Web Services made this point forcefully, using the phrase
“consistency mechanisms” where we use coordination:

The first principle of successful scalability is to
batter the consistency mechanisms down to a min-
imum, move them off the critical path, hide them
in a rarely visited corner of the system, and then
make it as hard as possible for application devel-
opers to get permission to use them [27].

The issue is not that coordination is tricky to implement, though
that is true. The main problem is that coordination can dramatically
slow down computation, or stop it altogether. Recent work showed
that state-of-the-art multiprocessor key-value stores can spend
90% of their time waiting for coordination; a coordination-free
implementation called Anna ran over two orders of magnitude
faster by eliminating that coordination [47]. Key-value stores are
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simple systems with narrow APIs. Can we avoid coordination more
generally, as Hamilton recommends? When?

Surprisingly, this was an open question in distributed systems
until relatively recently, due to a narrow focus on storage semantics.
We can do better by moving up the stack, setting aside incidental
storage details and considering program semantics more holistically.
Before we delve into details, we begin with intuition on what is
desirable and what is possible.

1.2 Stay in Your Lane: The Perfect Freeway

As an analogy, consider driving on a highway during rush hour. If
each car would drive forward independently in its lane at the speed
limit, everything would be fine: the capacity of the highway could
be fully exploited. Unfortunately, there always seem to be drivers
who have other places to go than forward! To prevent two cars
from being in the same place at the same time, we drivers engage
in various forms of coordination when entering traffic, changing
lanes, coming to intersections, etc. We adhere to formal protocols,
including traffic lights and stop signs. We also frequently engage in
ad hoc forms of coordination with neighboring cars by using turn
signals, eye contact, and the familar but subtle dance of driving
our vehicles more or less aggressively. With all these mechanisms,
one thing is common: they slow us down when traffic is crowded.
Worse, these slowdowns propagate back to the drivers behind us,
and queuing effects amplify the problems. In the end, rush hour on
the highway is a nightmare—wildly less efficient than the highway’s
capacity’.

The analogy to distributed systems is fairly direct. In principle,
each machine or process in a system could proceed forward au-
tonomously with its ordered list of instructions, and make progress
as quickly as possible. But to avoid conflicts on shared state (akin
to two cars being in the same place at the same time), distributed
software employs coordination protocols to stay “safe”. The effect
of these protocols is to cause one or more processes to idly wait
until some other process successfully sends a signal saying it is
done.

In many cases, however, coordination is not a necessary evil, it
is an incidental requirement of a design decision. To return to our
traffic analogy, consider stop lights: they allow drivers to mediate
access to a shared intersection by following a waiting protocol. Stop
light delays can be easily avoided by taking advantage of another
dimension in space: an overpass or tunnel removes the intersection
entirely. There is no endemic need to employ coordination in two
dimensions via stop lights; they are just one engineering solution
to a problem, with a particular tradeoff between cost of initial
implementation and resulting throughput.

! As it happens, humans are not very good at simply driving forward at a fixed speed
in their lane; but machines are [43]!
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Figure 1: A distributed waits-for graph with replicated
nodes and partitioned edges. There are two cycles here:
one local to Machine 1 ({T1, Tz}), and one that spans Ma-
chines 1 and 2 ({T1, T3}).

1.3 Cruising and Stalling on Graphs

The Perfect Freeway is an idealistic analogy. We return our atten-
tion to examples from distributed computing, to illustrate when
we can and cannot achieve the ideal of coordination-freeness. We
consider two nearly identical classical distributed systems problems
involving graph reachability—one coordination-free, one not.

1.3.1 Distributed Deadlock Detection. Distributed databases iden-
tify cycles in a distributed graph in order to detect and remediate
deadlocks. In a traditional database system, a transaction T; may
be waiting for a lock held by another transaction T}, which may in
turn be waiting for a second lock held by T;. The deadlock detector
identifies such “waits-for” cycles by analyzing a directed graph
in which nodes represent transactions, and edges represent one
transaction waiting for another on a lock queue.

In a distributed database, a “local” (single-machine) view of the
waits-for graph contains only a subset of the edges in the global
waits-for graph. In this scenario, how do local deadlock detectors
work together to identify global deadlocks?

Waits-for cycles may span machines, as in Figure 1. To identify
these distributed deadlocks, each machine can exchange copies
of its edges with other machines to accumulate more information
about the global graph. Any time a machine observes a cycle in the
information it has received so far, it can declare a deadlock among
the transactions on that cycle.

We might be concerned that there are “race conditions” in this
distributed computation. Do local detectors have to coordinate with
other nodes to be sure of a deadlock they have observed? In this
case, no coordination is required. To see this, note that decisions
based on incomplete information are stable. For example, once
Machine 1 and Machine 2 jointly identify a deadlock between T;
and T3, new information from Machine 3 will not change that fact.
Additional facts can only result in additional cycles being detected:
the output grows monotonically with the input. Finally, if all the
edges are eventually shared across all machines, the machines will
agree upon the outcome, which is based on the full graph.

1.3.2  Distributed Garbage Collection. Garbage collectors in dis-
tributed systems must identify unreachable objects in a distributed
graph of memory references. Garbage collection works by identify-
ing graph components that are disconnected from the “root” of a
system runtime.
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Figure 2: A distributed object reference graph with re-
mote references (dotted arrows). The fact that object O3
is reachable from Root can be established without any in-
formation from Machine 3. Objects Os and O¢ are garbage,
which can only be established by knowing the entire
graph.

In a distributed system, references to objects can span machines.
A local view of the reference graph contains only a subset of the
edges in the global graph. How can multiple local garbage collectors
work together to identify objects that are truly unreachable?

Note that a machine may have a local object and no knowledge
whether the object is connected to the root—Machine 3 and object
Oy in Figure 2 form an example. Yet there still may be a path to
that object from the root that consists of edges distributed across
other machines. Hence machines should exchange copies of edges
to accumulate more information about the graph.

As before, we might be concerned that there are race condi-
tions here. Can local collectors autonomously declare and deallo-
cate garbage? Here, the answer is different: coordination is indeed
required! To see this, note that a decision based on incomplete
information—e.g., Machine 3 deciding that object O4 is unreach-
able in Figure 2—can be invalidated by the subsequent arrival of
new information that demonstrates reachability (e.g., the edges
Root — 01,01 — 03,03 — Oy). The output does not grow
monotonically with the input: previous “answers” may need to
be retracted! To avoid this, a machine must ensure that it has heard
everything there is to hear before it declares an object unreachable.
The only way to know it has heard everything is to coordinate with
all the other machines to establish that fact.

1.4 The Crux of Consistency: Monotonicity

These examples bring us back to our fundamental question, which
applies to any concurrent computing framework:

QUESTION: What is the family of problems that can be consistently
computed in a distributed fashion without coordination, and what
problems lie outside that family?

There is a difference between an incidental use of coordination
and an intrinsic need for coordination: the former is the result of an
implementation choice; the latter is a property of a computational
problem. Hence our Question is one of computability, like P vs. NP
or Decidability. It asks what is (im)possible for a clever programmer
to achieve.

Note that the question assumes some definition of “consistency”.
Where traditional work focused narrowly on memory consistency
(i-e., reads and writes produce agreed-upon values), we want to fo-
cus on program consistency: does the program produce the outcome



we expect (e.g., deadlocks detected, garbage collected), despite any
race conditions that might arise?

Our examples provide clues for answering our question. Both
depend on graph reachability, but they differ in one key aspect. A
deadlock is identified by the existence of a (cyclic) path. Garbage
is identified by the non-existence of a path. The set of satisfying
paths that exist is monotonic in the information received:

DEFINITION 1. A program P is monotonic if for any input sets
S, T whereS C T, P(S) C P(T).

By contrast, the set of satisfying paths that do not exist is non-
monotonic: conclusions made on partial information may not hold
in eventuality.

Monotonicity is the key property underlying the need for coordi-
nation to establish consistency, as captured in the CALM Theorem:

THEOREM 1. Consistency As Logical Monotonicity (CALM). A
program has a consistent, coordination-free distributed implementa-
tion if and only if it is monotonic.

Intuitively, monotonic programs are “safe” in the face of missing
information, and can proceed without coordination. Non-monotonic
programs, by contrast, must be concerned that truth of a property
could change in the face of new information. Therefore they cannot
proceed until they know all information has arrived, requiring them
to coordinate.

Additionally, because they “change their mind”, non-monotonic
programs are order-sensitive: the order in which they receive infor-
mation determines how they toggle state back and forth, which in
turn determines their final state. By contrast, monotonic programs
simply accumulate beliefs; their output depends only on the content
of their input, not the order in which is arrives.

Our discussion so far has remained at the level of intuition. The
next section provides a sketch of a proof of the CALM Theorem,
including further discussion of definitions for consistency and co-
ordination. Those seeking a formal proof are directed to the papers
by Ameloot, et al. [8, 9].

2 CALM: A PROOF SKETCH

Our first challenge in formalizing the CALM Theorem is to define
program consistency in a manner that allows us to reason about
program outcomes, rather than mutations to storage. Having done
that, we can move on to a proof that is more refined than those
based on traditional memory consistency.

2.1 Program Consistency: Confluence

Distributed systems introduce significant non-determinism to our
programs. Sources of non-determinism include unsynchronized par-
allelism, unreliable components, and networks with unpredictable
delays. As a result, a distributed program can exhibit a large space
of possible behaviors on a given input.

While we may not control all the behavior of a distributed pro-
gram, our true concern is with its observable behavior: the program
outcomes. To this end, we want to assess how distributed non-
determinism affects program outcomes. A practical consistency
question is this: “Does my program produce deterministic outcomes
despite non-determinism in the runtime system?”

This is a question of program confluence. In the context of non-
deterministic message delivery, an operation on a single machine
is confluent if it produces the same set of outputs for any non-
deterministic ordering and batching of a set of inputs. Following
our discussion of sets of information S and T above, a confluent
single-machine operation can be viewed as a deterministic func-
tion from sets to sets, abstracting away the nondeterministic order
in which its inputs happen to appear in a particular run of a dis-
tributed system. Confluent operations compose: if the outputs of
one confluent operation are consumed by another, the resulting
composite operation is confluent. Hence confluence can be applied
to individual operations, components in a dataflow, or even en-
tire distributed programs [2]. If we restrict ourselves to building
programs by composing confluent operations, our programs are
confluent by construction, despite orderings of messages or execu-
tion races within and across components.

Unlike traditional memory consistency properties from the sys-
tems literature such as linearizability [30] and serializability [21],
confluence makes no requirements or promises regarding notions
of recency (e.g., a read is not guaranteed to return the result of the
latest write request issued) or ordering of operations (e.g., writes
are not guaranteed to be applied in the same order at all repli-
cas). Nevertheless, if an application is confluent, we know that any
such anomalies at the memory or storage level do not affect the
application outcomes.

Confluence is a powerful yet permissive correctness criterion for
distributed applications. It rules out application-level inconsistency
due to races and non-deterministic delivery, while permitting non-
deterministic ordering and timings of lower-level operations that
may be costly (or sometimes impossible) to prevent in practice.

2.1.1  Confluent Shopping Carts. To illustrate the utility of rea-
soning about confluence, we consider an example of a higher-level
application. In their paper on the Dynamo key-value store [20],
researchers from Amazon describe a shopping cart application that
achieves confluence without coordination. In their scenario, a client
web browser requests items to add and delete from an online shop-
ping cart. For availability and performance, the state of the cart is
tracked by a distributed set of server replicas, which may receive
requests in different orders. In the Amazon implementation, shop-
ping performs no coordination, yet all server replicas eventually
reach the same final state. The shopping cart is precisely the class
of program that interests us: eventually consistent, even when im-
plemented atop a non-deterministic distributed substrate that does
no coordination.

Program consistency is possible in this case because the fun-
damental operations performed on the cart (e.g., adding items)
commute, so long as the contents of the cart are represented as a set
and the internal ordering of its elements is ignored. If two replicas
disagree about the contents of the cart, their differing views can be
reconciled simply by taking the union of their respective sets.

A complication in this context is that deletes are not monotonic
and seem to cause consistency trouble: if instructions to add item I
and delete item I arrive in different orders at different machines,
the machines may disagree on whether I should be in the cart. As
a traditional approach to avoid such “race conditions”, we might
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Figure 3: A simple four-machine relational transducer net-
work with one machine’s state and event loop shown in de-
tail.

bracket every non-monotonic delete operation with coordination.
Can we do better?

As a creative application-level use of monotonicity, a common
technique is for deletes to be handled separately from inserts as
another monotonically growing set of items [20, 42]. The sets of
inserted and deleted items are both insert-only, and the insertions
across the two commute. This would seem to solve our problem!
Unfortunately, while additions and deletions commute, neither
operation commutes with checkout—if a checkout message arrives
before some updates, those updates will be lost.

Even if we stop here, our lens provided a win: monotonicity
allows shopping to be coordination free, even though checkout still
requires coordination. This is the conclusion of the Dynamo design.
In later work [18], we go further to make checkout monotonic in
this setting as well. : the checkout operation is enhanced with a
manifest from the client of all its update message IDs that preceded
the checkout message: replicas can delay processing of the checkout
message until they have processed all updates in the manifest.

This design evolution illustrates the theme we seek to clarify.
Rather than micro-optimize protocols to protect race conditions
in procedural code, modern distributed systems creativity often
involves minimizing the use of such protocols.

2.2 A Sketch of The Proof

The CALM conjecture was presented in a keynote talk at PODS
2010 and written up shortly thereafter alongside a number of corol-
laries [29]. In a subsequent series of papers [8, 9, 48], Ameloot and
colleagues presented a formalization and proof of the CALM Theo-
rem which remains the reference formalism at this time. Here we
briefly review the structure of the argument from Ameloot, et al.

To capture the notion of a distributed system composed out of
monotonic (or non-monotonic) logic, Ameloot uses the formalism
of a relational transducer [1] running on each machine in a network.
Simply put, a relational transducer is an event-driven server with
a relational backing store and programs written as queries. Each
transducer runs a sequential event loop as follows:

(1) Ingest and apply an unordered batch of requests to insert
and delete records in local relations. Requests may come
from other machines or a distinguished input relation.

(2) Query the (now-updated) local relations to compute batches
of records that should be sent somewhere (possibly locally)
for handling in future.

(3) Send the results of the query phase to relevant machines in
the network as requests to be handled. Results sent locally
are ingested in the very next iteration of the event loop.
Results can also be “sent” to a distinguished output.

The Send phase knows where to send records based on their
data content: the records contain addresses of other machines in
the network. In essence, a programmer in this environment “issues
a request to send a message to machine n” by causing a record
containing the address of n to be Ingested, and writing a Query that
will read that record and generate the relevant output for the Send
phase?.

The next challenge is to define monotonicity carefully. In Re-
lational Transducers, “programs expressible in monotonic logic”
are easy to define: they are the transducer networks where every
machine’s queries are syntactically monotonic relational queries.
For instance, in the relational algebra, we can allow each machine
to employ selection, projection, intersection, join and transitive
closure (the monotonic operators of relational algebra), but not
set-difference (the sole non-monotonic operator). If we use rela-
tional logic, we disallow the use of universal quantifiers (V) and
their negation-centric equivalent (=3)—precisely the construct that
tripped us up in the garbage collection example of Section 1.3.2
("everything there is to hear"). If we model our programs with mu-
table relations, insertions are allowable, but in general updates and
deletions are not [5, 35]. These informal descriptions elide a num-
ber of clever exceptions to these rules that still achieve semantic
monotonicity despite syntactic non-monotonicity [8, 18], but they
give a sense of how the formalism is defined.

Now that we have a formal execution model (relational trans-
ducers), a definition of consistency (confluence), and a definition
of monotonic programs, we are prepared to prove a version of the
CALM Theorem. The forward “if” direction of the CALM Theorem
is quite straightforward and similar to our previous discussion: it
is easy to show that any monotonic relational transducer in the
network will eventually Ingest and Send a deterministic set of mes-
sages, and generate a deterministic output.

The reverse “only if” direction is quite a bit trickier, as it requires
ruling out any possible scheme for avoiding coordination. The first
challenge is to formally define “coordination” messages, and distin-
guish them from other forms of message passing that satisfy data
dependencies needed to compute an output. To do this, Ameloot,
et al. consider all possible ways to partition data across machines
in the network at program start. From each of these starting points,
a messaging pattern is produced during execution of the program.
We say that a program contains coordination if it requires messages
to be sent under all possible partitionings—including partitionings
that co-locate all data at a single machine. Any message that is sent

2This paradigm has been used in a number of languages for Declarative Networking
like Overlog and NDlog [37, 38], as well as in the Bloom language for distributed
programming [3]



in every partitioning is a coordination message. As an example,
consider how a distributed garbage collector decides if a locally dis-
connected object O is garbage. Even if the all the data is placed at a
single machine, that machine needs to exchange messages with the
other machines to check that they have no more additional edges—
it needs to “coordinate”, not just communicate data dependencies.
The proof then proceeds to show that non-monotonic operations
require this kind of coordination.

This brief description elides many interesting aspects of the
original paper. In addition to the connections established between
monotonicity and coordination-freeness, connections are also made
between these properties and other distributed systems proper-
ties. Of particular note is the issue of distributed agreement on
network membership (represented by Ameloot, et al. as the All
relation). Network membership is a classic challenge in distributed
systems, and the complicating factor in many classic distributed
protocols. It is shown that the class of monotonic programs is the
same as the class of programs that do not require knowledge of
network membership—they do not query All. A similar connection
is shown with the property of a machine being aware of its own
identity/address (querying the Id relation).

3 CALM PERSPECTIVE ON THE STATE OF
THE ART

The CALM theorem describes what is and is not possible. But can
we use it practically? In this section, we address the implications
of CALM with respect to the state of the art in distributed systems
practice. It turns out that many patterns for maintaining consistency
follow directly from the theorem.

3.1 CAP and CALM: Going Positive

Brewer’s CAP Theorem [14] informally states that a system can
exhibit only two out of the three following properties: Consistency,
Availability, and Partition-tolerance. CAP is a negative result: it
captures consistency properties that cannot be achieved in general.
But Brewer frames this with constructive advice:

[The original] expression of CAP served its pur-
pose, which was to open the minds of designers
to a wider range of systems and tradeoffs ... The
modern CAP goal should be to maximize combi-
nations of consistency and availability that make
sense for the specific application. [14]

CALM is a positive result in this arena: it circumscribes the class of
programs for which all three of the CAP properties can indeed be
achieved simultaneously. To see this, note the following:

OBSERVATION 1. Coordination-freeness is equivalent to availabil-
ity under partition.

In the forward direction, a coordination-free program is by defi-
nition available under partition: all machines can proceed indepen-
dently. When and if the partition heals, state merger is monotonic
and consistent. In the reverse direction, a program that employs
coordination will stall (become unavailable) during coordination
protocols if the machines involved in the coordination span the
partition.

In that frame, CALM asks and answers the underlying question
of CAP: “which programs can be consistenly computed while re-
maining available under partition?”. CALM does not contradict
CAP. Instead, CALM approaches distributed consistency from a
wider frame of reference:

(1) First, CAP is a negative result over the space of all programs:
CALM confirms this coarse result, but delineates at a finer
grain the negative and positive cases. Monotone programs
can in fact satisfy all three of the CAP properties at once;
non-monotone programs are the ones that cannot.

(2) The key insight in CALM is to focus on consistency from
the viewpoint of program outcomes rather than the tradi-
tional histories of storage mutation. The emphasis on the
program being computed shifts focus from implementation
to specification: it allows us to ask questions about what
computations are possible.

The latter point is what motivated our outcome-oriented defini-
tion of program consistency. Where the CAP Theorem proofs of
Gilbert and Lynch [24] choose linearizability of updates to storage,
the CALM Theorem proofs choose confluence of program outcomes.
We note that confluence is both more permissive and closer to user-
observable properties. CALM provides the formal framework for
the widespread intuition that we can indeed “work around CAP”
in many cases, even if we violate traditional systems-level notions
of storage consistency.

3.2 Distributed Design Patterns

Our shift of focus from mutable storage to program semantics has
implications beyond proofs. It also informs the design of better
programming paradigms for distributed computing.

Traditional programming models the world as a collection of
named variables whose values change over time. Bare assignment [10]
is a nonmonotonic programming construct: outputs based on a pre-
fix of assignments may have to be retracted when new assignments
come in. Similarly, assignments make final program states depen-
dent upon the arrival order of inputs. This makes it extremely hard
to take advantage of the CALM theorem to analyze systems written
in traditional imperative languages!

Functional programming has long promoted the use of immutable
variables, which are constrained to take on only a single value dur-
ing a computation. Viewed through the lens of CALM, an immutable
variable is a simple monotonic pattern: it transitions from being
undefined to its final value, and never goes back. Immutable vari-
ables generalize to immutable data structures; techniques such as
deforestation [45] make programming with immutable trees, lists
and graphs practical.

Monotonic programming patterns are common in the design of
distributed storage systems. We already discussed the Amazon shop-
ping cart for Dynamo, which models cart state as two growing sets.
A related pattern in storage systems is the use of tombstones: special
data values that mark a data item as deleted. Instead of explicitly
allowing deletion (a non-monotonic construct), tombstones masked
immutable values with corresponding immutable tombstone val-
ues. Taken together, a data item with tombstone monotonically
transitions from undefined, to a defined value, and ultimately to
tombstoned.
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Conflict-free replicated data types (CRDTs) [42] provide an object-
oriented framework for monotonic programming patterns like
tombstones, typically for use in the context of replicated state.
A CRDT is an abstract data type whose internal state is a lattice
that evolves monotonically according to a partial order, such as the
partial order of set containment under C or of integers under <.
Two replicas of a CRDT converge to the same state regardless of the
order of their inputs. Equally importantly, the states of two CRDT
replicas that may have seen different inputs and orders can always
be deterministically merged into a new final state that incorporates
all of the inputs seen by both.

CRDTs are an OO lens on a long tradition of prior work that
exploits commutativity to achieve determinism under concurrency.
This goes back at least to long-running transactions [16, 23], con-
tinuing through recent work on the linux kernel [17]. The benefits
of commutativity have motivated not only abstract data types, but
also composable libraries or languages, enabling programmers to
reason about correctness of whole programs [3, 34, 39]. We turn to
an example of that idea next.

3.3 The Bloom Programming Language

One way to encourage good distributed design patterns is to use a
language specifically centered around those patterns. Bloom is a
programming language we designed in that vein.

The main goal of Bloom is to make distributed systems easier
to reason about and program. We felt that a good language for
a domain is one that obscures irrelevant details and brings into
sharp focus those that matter. Given that data consistency is a
core challenge in distributed computing, we designed Bloom to
be data-centric: both system state and events are represented as
named data, and computation is expressed as queries over that data.
The programming model of Bloom closely resembles that of the
relational transducers described in Section 2.23. From the program-
mer’s perspective, Bloom resembles event-driven or actor-oriented
programming—Bloom programs use reorderable query-like han-
dler statements to describe how an agent responds to messages
(represented as data) by reading and modifying local state and by
sending messages.

Because Bloom programs are written in a relational-style query
language, monotonicity is easy to spot just as it was in relational
transducers. The relatively uncommon non-monotonic operations
such as anti-join and set minus stand out in the language’s syntax.
In addition, Bloom’s types include CRDT-like lattices that provide
object-level commutativity, associativity and idempotence.

The advantages of the Bloom design are twofold. First, Bloom
makes set-oriented, monotonic (and hence confluent) program-
ming the easiest constructs for programmers to work with in the
language. Contrast this with imperative languages, in which assign-
ment and explicit sequencing of instructions—two non-monotone
constructs!—are the most natural and familiar building blocks for
programs. Second, Bloom can leverage static analysis based on
CALM to certify when programs provide the state-based conver-
gence properties provided by CRDTs, and when those properties
are preserved across compositions of modules. This is the power

3This is no coincidence: both Bloom and Ameloot’s transducer work are based on a
relational logic for distributed systems called Dedalus [5].

of a language-based approach to monotonic programming: local,
state-centric guarantees can be automatically composed into global,
outcome-oriented, program-level guarantees.

With Bloom as a base, we have developed tools including declar-
ative testing frameworks [4], verification tools [6], and program
transformation libraries that add coordination to programs that
cannot be statically proven to be confluent [2].

3.4 Coordination In Its Place

Pragmatically, it can be difficult to find a monotonic implementa-
tion of a full-featured application. Instead, a good strategy is to keep
coordination off of the critical path. In the shopping cart example,
coordination was limited to checkout, when user performance ex-
pectations are lower. In the garbage collection example (assuming
adequate resources) the task can run in the background without
affecting users.

It can take creativity to move coordination off of the critical
path and into a background task. The most telling example from
Section 3.2 is the use of tombstoning for low-latency deletion. In
practice, memory for tombstoned items must be reclaimed, so even-
tually all machines need to agree to delete some items. Like GC, this
distributed deletion can be coordinated lazily in the background on
a rolling basis. In this case, monotonic design does not stamp out
coordination entirely, it moves it off the critical path.

Another non-obvious use of CALM analysis is to identify when
to compensate (“apologize” [28]) for inconsistency, rather than pre-
vent it via coordination. For example, when a retail site allows you
to purchase an item, it should decrement the count of items in
inventory. This non-monotonic action suggests that coordination
is required, e.g., to ensure that the supply is not depleted before
an item is allocated to you. In practice, this requires too much
integration between systems for inventory, supply chain, and shop-
ping. In the absence of such coordination, your purchase may fail
non-deterministically after checkout. To account for this possibil-
ity, additional compensation code must be written to detect the
out-of-stock exception, and handle it by—for example—sending
you an apologetic email with a loyalty coupon. Note that a coupon
is not a clear mathematical inverse of any action in the original
program; domain-aware compensation often goes beyond typical
type system logic.

In short, we do not advocate pure monotonic programming as
the only way to build efficient distributed systems. Monotonic-
ity also has utility as an analysis framework for identifying non-
determinism so that programmers can address it creatively.

4 QUESTIONS

The CALM Theorem provides a “bright line” between problems
that require coordination and those that do not. In addition to the
constructive directions sketched above, CALM also raises a number
of questions at the heart of distributed systems theory and pratice.

4.1 Expressiveness

Typically, when we define a family of computations, we expect a
characterization of the expressive power of that family. What is the
expressive power of the monotone distributed programs from the
CALM Theorem?



This is a question of descriptive complexity, and one landmark
result in that space is the Inmerman-Vardi Theorem [31, 44]. In a
nutshell, Inmerman-Vardi states that if you take a suitably defined
class of monotone logic programs (where negation is allowed only
on pre-defined, stored relations) and provide some successor rela-
tion that provides a total order, the resulting language can express
all of PTIME.

So one natural question is this: can we implement all of PTIME in
a coordination-free manner? Do the conditions of the Immerman-
Vardi Theorem align with the conditions of the CALM Theorem?

Intuitively, the answer would appear to be “no”. One concern
is that Immerman-Vardi’s requirement for a successor relation is
an unreasonable assumption for a distributed system. Indeed, coor-
dination protocols like Paxos were designed precisely to achieve
such a totally ordered sequence in a distributed system. But what
if we made different, pragmatic assumptions about what can be
assumed in a distributed systems: e.g. a successor relation per node,
and causal ordering across nodes? How large a complexity class
could we achieve? The specifics of the definitions of the computing
model and desired guarantees are critical to the question of what is
achievable.

The state of the art in this direction is captured by Ameloot
and Van den Bussche [7]. For example, if all machines know the
rules for partitioning data across the system, certain syntactically
non-monotone programs can be treated as monotone and run
coordination-free. It would seem plausible that the class of programs
that can be practically made coordination-free could be expanded
even further with other common system assumptions.

4.2 Monotonic Program Synthesis

The CALM Theorem is not a constructive result: it provides no assis-
tance in finding monotonic implementations of programs. Perhaps
such programs are difficult for developers to discover?

In this setting, it is interesting to consider program synthesis
techniques. Monotone relational languages seem well-suited, be-
cause they are small yet expressive. There is encouraging work in
this regard. Cheung and colleagues [15] have had success lifting
imperative code fragments in traditional programming languages
into declarative, monotonic SQL code. Going further, Itzhaky and
colleagues show how to synthesize more complex logic programs
that correspond to more expressive complexity classes [32]. With
such techiques, perhaps most programmers could stick with tra-
ditional languages, and have their code translated into something
like Bloom to get the attendant benefits.

Cheung’s group has also had success at synthesizing SQL queries
from input/output examples [46]. As we look forward to a world
where machine learning replaces some of the trickiness and tedium
of programming, perhaps logic languages with a focus on mono-
tonicity should be a key target for efficient distributed systems.

4.3 Analyzing Non-Monotonic Code

In logic languages like Bloom, it is easy to (conservatively) certify
programs as deterministic if they only use monotonic syntax. A
programmer or compiler can “repair” non-monotonic statements

by wrapping them with coordination logic. But the resulting re-
paired code still contains non-monotonic statements. Can we write
program checks that will verify the consistency of such code?

One underlying challenge here is that coordination does not
remove non-determinism, it controls non-determinism across the
system. For example, Paxos is often used to impose an order for
concurrent events in a distributed system; this ensures uniform
decisions across machines in one run of the system, but another
run might produce a different outcome. Hence our definition of
consistency as confluence does not precisely capture the effect of co-
ordination in non-monotonic programs. Declarative constructs like
Sacca and Zaniolo’s choice operator [41] may be useful to provide
both a semantics and a syntax for capturing the idea of controlled
non-determinism without resorting to operational reasoning.

As discussed in Section 3.4, sometimes the desired solution to
non-monotonic code is to implement compensation rather than
coordination. Again, the repaired code still contains the original
non-monotonic logic, and the program specification is enhanced
to achieve some notion of acceptable non-determinism: every cus-
tomer’s outcome non-deterministically satisfies an exclusive choice
among acceptable properties. This bears some resemblance to the
previous discussion of choice being made by coordination; it would
be interesting if coordination and compensation could be up-leveled

to a single more general semantic concept of eventual non-deterministic

agreement. With such a concept explicitly identified, perhaps it
could be represented linguistically in such a way that repaired
programs could be checked for correctness.

4.4 Stochastic CALM

Distributed systems research traditionally deals in deterministic
guarantees, often founded in a basis of logic. Recent excitement
about machine learning at scale has brought statistical program-
ming concerns to distributed systems. One celebrated result in this
space is Hogwild! [40], in which the authors observed empirically—
and subsequently proved formally—that a coordination-free paral-
lel implementation of the stochastic gradient descent algorithm is
guaranteed to converge to an optimum in the same scenarios as a
bulk-synchronous implementation. The proof of this result rests
on arguments that do not translate broadly to other programming
problems. What is the connection between the specific results of
Hogwild! and the general result of the CALM Theorem? Can we
broaden our CALM definition of consistency to encompass statisti-
cal equivalences like convergence to a near-optimum?

An intriguing result that points in this direction comes from de
Sa, et al. [19]. They generalized the idea of Hogwild! and cast their
proofs in the frame of super-martingales, in which the current value
of a stochastic process is an upper bound on the expected next
value: in short, the expectations monotonically shrink. The paper
comes up with a stochastic model for algorithms like Hogwild!
where the expectations are super-martingales. Perhaps there is a
connection between this notion of monotonicity and the logical
monotonicity of the CALM Theorem, or the two ideas need to be
extended to be brought together.



5 ADDITIONAL RESULTS

The PODS keynote talk that introduced the CALM conjecture in-
cluded a number of related conjectures regarding coordination,
consistency and declarative semantics [29]. Following the CALM
Theorem result [9], the database theory community continued to
explore these relationships, as summarized by Ameloot [7]. For ex-
ample, in the batch processing domain, Koutris and Suciu [33], and
Beame, et al. [12] examine massively parallel computations with
rounds of global coordination, considering not only the number of
rounds needed for different algorithms, but also communication
costs and skew.

In a different direction, a number of papers tolerate memory in-
consistency while maintaining program invariants. Bailis et al. [11]
define a notion of Invariant Confluence for replicated transactional
databases, given a set of database invariants. Many of the invariants
they propose are monotonic in flavor and echo intuition from CALM.
Gotsman et al. [25] present program analyses that identify which
pairs of potentially concurrent operations must be synchronized to
avoid invariant violations. Li, et al. define RedBlue Consistency [36],
requiring that users “color” operations based on their ordering re-
quirements; given a coloring they choose a synchronization regime
that satisfies the requirements.

Blazes [2] similarly elicits programmer-provided labels to more
efficiently avoid coordination, but with the goal of guaranteeing
full program consistency as in CALM.

6 CONCLUSION

Distributed systems theory is dominated by fearsome negative re-
sults, such as the Fischer/Lynch/Patterson impossibility proof [22],
the CAP Theorem [24], and the two generals problem [26]. These
results identify things that are not possible to achieve in any dis-
tributed system. As system builders, of course, we are interested
in the complement of this space: what can be achieved, and, im-
portantly, how can we achieve it while minimizing complexity and
cost?

The CALM Theorem presents a positive result that delineates the
frontier of the possible. CALM shows that monotonicity, a property
of a program, implies consistency, a property of the output of any
execution of that program. The inverse is also established: non-
monotonic programs require runtime enforcement (coordination) to
ensure consistent execution. As a program property, CALM enables
reasoning via static program analysis, and limits or eliminates the
use of runtime checks. This is in contrast to storage consistency like
linearizability or serializablity, which required expensive runtime
enforcement.

CALM falls short of being a constructive result—it does not actu-
ally tell us how to write consistent, coordination-free distributed
systems. Even armed with the CALM theorem, a system builder
must answer two key questions. First, and most difficult, is whether
the problem they are trying to solve has a monotonic specification.
Most programmers begin with pseudo-code of some implementa-
tion in mind, and the theory behind CALM would appear to provide
no guidance on how to extract a monotone specification from a can-
didate implementation. The second question is equally important:
given a monotonic specification for a problem, how can I imple-
ment it in practice? Languages such as Bloom point the way to

new paradigms for programming distributed systems that favor and
(conservatively) test for monotonic specification. There is remain-
ing work to do making these languages attractive to developers,
and efficient at runtime.
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